minus1(0) -> 0
+2(x, 0) -> x
+2(0, y) -> y
+2(minus1(1), 1) -> 0
minus1(minus1(x)) -> x
+2(x, minus1(y)) -> minus1(+2(minus1(x), y))
+2(x, +2(y, z)) -> +2(+2(x, y), z)
+2(minus1(+2(x, 1)), 1) -> minus1(x)
↳ QTRS
↳ DependencyPairsProof
minus1(0) -> 0
+2(x, 0) -> x
+2(0, y) -> y
+2(minus1(1), 1) -> 0
minus1(minus1(x)) -> x
+2(x, minus1(y)) -> minus1(+2(minus1(x), y))
+2(x, +2(y, z)) -> +2(+2(x, y), z)
+2(minus1(+2(x, 1)), 1) -> minus1(x)
+12(minus1(+2(x, 1)), 1) -> MINUS1(x)
+12(x, minus1(y)) -> MINUS1(+2(minus1(x), y))
+12(x, minus1(y)) -> MINUS1(x)
+12(x, +2(y, z)) -> +12(x, y)
+12(x, minus1(y)) -> +12(minus1(x), y)
+12(x, +2(y, z)) -> +12(+2(x, y), z)
minus1(0) -> 0
+2(x, 0) -> x
+2(0, y) -> y
+2(minus1(1), 1) -> 0
minus1(minus1(x)) -> x
+2(x, minus1(y)) -> minus1(+2(minus1(x), y))
+2(x, +2(y, z)) -> +2(+2(x, y), z)
+2(minus1(+2(x, 1)), 1) -> minus1(x)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
+12(minus1(+2(x, 1)), 1) -> MINUS1(x)
+12(x, minus1(y)) -> MINUS1(+2(minus1(x), y))
+12(x, minus1(y)) -> MINUS1(x)
+12(x, +2(y, z)) -> +12(x, y)
+12(x, minus1(y)) -> +12(minus1(x), y)
+12(x, +2(y, z)) -> +12(+2(x, y), z)
minus1(0) -> 0
+2(x, 0) -> x
+2(0, y) -> y
+2(minus1(1), 1) -> 0
minus1(minus1(x)) -> x
+2(x, minus1(y)) -> minus1(+2(minus1(x), y))
+2(x, +2(y, z)) -> +2(+2(x, y), z)
+2(minus1(+2(x, 1)), 1) -> minus1(x)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
+12(x, +2(y, z)) -> +12(x, y)
+12(x, minus1(y)) -> +12(minus1(x), y)
+12(x, +2(y, z)) -> +12(+2(x, y), z)
minus1(0) -> 0
+2(x, 0) -> x
+2(0, y) -> y
+2(minus1(1), 1) -> 0
minus1(minus1(x)) -> x
+2(x, minus1(y)) -> minus1(+2(minus1(x), y))
+2(x, +2(y, z)) -> +2(+2(x, y), z)
+2(minus1(+2(x, 1)), 1) -> minus1(x)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
+12(x, +2(y, z)) -> +12(x, y)
+12(x, +2(y, z)) -> +12(+2(x, y), z)
Used ordering: Polynomial Order [17,21] with Interpretation:
+12(x, minus1(y)) -> +12(minus1(x), y)
POL( +12(x1, x2) ) = max{0, x2 - 2}
POL( +2(x1, x2) ) = x1 + x2 + 3
POL( minus1(x1) ) = x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
+12(x, minus1(y)) -> +12(minus1(x), y)
minus1(0) -> 0
+2(x, 0) -> x
+2(0, y) -> y
+2(minus1(1), 1) -> 0
minus1(minus1(x)) -> x
+2(x, minus1(y)) -> minus1(+2(minus1(x), y))
+2(x, +2(y, z)) -> +2(+2(x, y), z)
+2(minus1(+2(x, 1)), 1) -> minus1(x)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
+12(x, minus1(y)) -> +12(minus1(x), y)
POL( +12(x1, x2) ) = max{0, x2 - 2}
POL( minus1(x1) ) = x1 + 3
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
minus1(0) -> 0
+2(x, 0) -> x
+2(0, y) -> y
+2(minus1(1), 1) -> 0
minus1(minus1(x)) -> x
+2(x, minus1(y)) -> minus1(+2(minus1(x), y))
+2(x, +2(y, z)) -> +2(+2(x, y), z)
+2(minus1(+2(x, 1)), 1) -> minus1(x)